Waveguides

Planar optical waveguide for biosensory applications

Flow field

Flow field via interdigital microelectrodes for the dielectric immobilization of microparticles

Microscopy

Atomic force microscopy of immobilized DNA molecules

Biomolecular Nanostructures and Measurement Technology

The Working Group on Biomolecular Nanostructures and Measurement Technology researches and develops methods and devices for the analysis and application of molecular interfaces and higher-order electronic effects. The main focus is on point-of-care applications as well as applications for hospitals and laboratory analysis. A broad spectrum of microscopic methods is covered, including THz spectroscopy.

Services:

  • Fluorescence microscopy on biological cells and single molecules
  • Atomic force microscopy in dry and wet conditions, on cells and single molecules
  • Electron microscopic analyses
  • Coatings (vapor deposition, sputtering), plasma cleaning, laser structuring
  • Training in atomic force microscopy and fluorescence microscopy
  • Opto-electronic development and optimization, e.g. of sensitivity or costs
  • Computer simulation of electronic analogue circuits
  • Computation of alternating electric fields for any three-dimensional geometry

Thermal image of a photodetector board
© Fraunhofer IZI-BB, R. Hölzel

Thermal image of a photodetector board

Methods

  • High-resolution lateral structure of immobilizates (»nanostructures«)
  • Formation of two and three-dimensional nanostructures through controlled self-organization of biological macromolecules (DNA, proteins)
  • Direct printing and writing of nanoscale structures using atomic force microscope and molecular ink
  • Establishing nanotechnology with biomolecules; single molecule anchoring
  • Development of nanoarrays for single cell testing
  • Impedance spectroscopy on biomolecules
  • Spatial manipulation of molecules using electric fields (molecular dielectrophoresis)

Equipment

  • Fluorescence microscopes, confocal scanning laser microscope with fluorescence correlation spectroscopy and fluorescence lifetime (FCS; FLIM, ≥ 350 nm)
  • Atomic force microscopes (AFM, SNOM), partly climate controlled
  • Scanning electron microscopy (SEM)
  • Oscilloscope and spectrum analyzers up to 30 GHz or 20 ps
  • Vectorial network analyzers from 10 Hz to 110 GHz

  • Leibniz Institute Innovations for High Performance Microelectronics IHP Frankfurt/Oder
  • Leibniz Institute of Photonic Technology IPHT Jena
  • Institute of Physics at the Czech Academy of Sciences CAS Prague

Publications

  • Laux EM, Knigge X, Bier FF, Wenger C, Hölzel R: Aligned immobilization of proteins using AC electric fields, Small 12, 1514-1520 (2016)
  • Laux EM, Knigge X, Bier FF, Wenger C, Hölzel R: Dielectrophoretic immobilization of proteins: Quantification by atomic force microscopy, Electrophoresis 36, 2094-2101  (2015)
  • Laux EM, Knigge X, Bier FF, Wenger C, Hölzel R: Dielectrophoretic immobilization of proteins: Quantification by atomic force microscopy, Electrophoresis 36, 2094-2101 (2015)
  • Laux EM,Bier FF, Wenger C, Hölzel R: Aligned immobilization of proteins using AC electric fields, Eur. Biophys. J. 44, S58 (2015)
  • Laux EM, Knigge X, Otto S, Wenger C, Bier FF, Hölzel R: Nano-manipulation of proteins by AC electric fields, Eur. Biophys. J. 44, S58 (2015)
  • Ermilova E, Bier FF, Hölzel R. Dielectric measurements of aqueous DNA solutions up to 110 GHz. Phys. Chem. Chem. Phys., 16 (2014): 11256-11264.
  • Wenger C, Knigge X, FraschkeM, Wolansky D, Kulse P, Kaletta U, Wolff A, Laux EM, Bier FF, Hölzel R: Label-free immobilization of nano-particles on silicon based electrodes for single-biomolecule studies, Proc. Int. Conf. Biomed. Electron. Devices, 176-180
  • Füllbrandt M, Ermilova E, Asadujjaman A, Hölzel R, Bier FF, von Klitzing R, Schönhals A. Dynamics of Linear Poly(N-isopropylacrylamide) in Water around the Phase Transition Investigated by Dielectric Relaxation Spectroscopy. J Phys Chem B. 118 (2014): 3750-3759.
  • Laux EM, Kaletta UC, Bier FF, Wenger C, Hölzel R. Functionality of dielectrophoretically immobilized enzyme molecules. Electrophoresis. 35 (2014): 459-466.
  • Otto S, Kaletta U, Bier FF, Wenger C, Hölzel R. Dielectrophoretic immobilisation of antibodies on microelectrode arrays. Lab Chip. 14 (2014): 998-1004.
  • Linck L, Reiß E, Bier F, Resch-Genger U. Direct labeling rolling circle amplification as a straightforward signal amplification technique for biodetection formats. Analytical Methods 4 (2012): 1215-1220.
  • Breitenstein M, Nielsen PE, Hölzel R, Bier FF. DNA-nanostructure-assembly by sequential spotting. J Nanobiotechnology 9 (2011): e54.
  • Reiß E, Hölzel R, Bier FF. Preparation of DNA Nanostructures with Repetitive Binding Motifs by Rolling Circle Amplification. Methods Mol Biol. 749 (2011):151-168.
  • Stanke S, Bier FF, Hölzel R. Fluid streaming above interdigitated electrodes in dielectrophoresis experiments. Electrophoresis 32 (2011): 2448-2455.
  • Breitenstein M, Hölzel R, Bier FF. Immobilization of different biomolecules by atomic force microscopy. J Nanobiotechnology. 8 (2010): e10.
  • Henning A, Bier FF, Hölzel R. Dielectrophoresis of DNA: Quantification by impedance measurements. Biomicrofluidics 4 (2010):, 022803 (9pp.) highly accessed.

 

Patente

  • Bier F, Hölzel R. Method and device for directed immobilisation of nano-and micro-objects on a substrate surface, immobilisates obtained thereby, and use thereof. EP 12 775 135.2 Priority 15.11.2011