Biomolecular Nanostructures and Measurement Technology

The Working Group on Biomolecular Nanostructures and Measurement Technology researches and develops methods and devices for the analysis and application of molecular interfaces and higher-order electronic effects. The main focus is on point-of-care applications as well as applications for hospitals and laboratory analysis. A broad spectrum of microscopic methods is covered, including THz spectroscopy.

Services:

  • Fluorescence microscopy on biological cells and single molecules
  • Atomic force microscopy in dry and wet conditions, on cells and single molecules
  • Electron microscopic analyses
  • Coatings (vapor deposition, sputtering), plasma cleaning, laser structuring
  • Training in atomic force microscopy and fluorescence microscopy
  • Opto-electronic development and optimization, e.g. of sensitivity or costs
  • Computer simulation of electronic analogue circuits
  • Computation of alternating electric fields for any three-dimensional geometry

Thermal image of a photodetector board
© Fraunhofer IZI-BB, R. Hölzel
Thermal image of a photodetector board

Methods

  • High-resolution lateral structure of immobilizates (»nanostructures«)
  • Formation of two and three-dimensional nanostructures through controlled self-organization of biological macromolecules (DNA, proteins)
  • Direct printing and writing of nanoscale structures using atomic force microscope and molecular ink
  • Establishing nanotechnology with biomolecules; single molecule anchoring
  • Development of nanoarrays for single cell testing
  • Impedance spectroscopy on biomolecules
  • Spatial manipulation of molecules using electric fields (molecular dielectrophoresis)

Equipment

  • Fluorescence microscopes, confocal scanning laser microscope with fluorescence correlation spectroscopy and fluorescence lifetime (FCS; FLIM, ≥ 350 nm)
  • Atomic force microscopes (AFM, SNOM), partly climate controlled
  • Scanning electron microscopy (SEM)
  • Oscilloscope and spectrum analyzers up to 30 GHz or 20 ps
  • Vectorial network analyzers from 10 Hz to 110 GHz

  • Leibniz Institute Innovations for High Performance Microelectronics IHP Frankfurt/Oder
  • Leibniz Institute of Photonic Technology IPHT Jena
  • Institute of Physics at the Czech Academy of Sciences CAS Prague

Publications

  • Laux EM, Knigge X, Bier FF, Wenger C, Hölzel R: Aligned immobilization of proteins using AC electric fields, Small 12, 1514-1520 (2016)
  • Laux EM, Knigge X, Bier FF, Wenger C, Hölzel R: Dielectrophoretic immobilization of proteins: Quantification by atomic force microscopy, Electrophoresis 36, 2094-2101  (2015)
  • Laux EM, Knigge X, Bier FF, Wenger C, Hölzel R: Dielectrophoretic immobilization of proteins: Quantification by atomic force microscopy, Electrophoresis 36, 2094-2101 (2015)
  • Laux EM,Bier FF, Wenger C, Hölzel R: Aligned immobilization of proteins using AC electric fields, Eur. Biophys. J. 44, S58 (2015)
  • Laux EM, Knigge X, Otto S, Wenger C, Bier FF, Hölzel R: Nano-manipulation of proteins by AC electric fields, Eur. Biophys. J. 44, S58 (2015)
  • Ermilova E, Bier FF, Hölzel R. Dielectric measurements of aqueous DNA solutions up to 110 GHz. Phys. Chem. Chem. Phys., 16 (2014): 11256-11264.
  • Wenger C, Knigge X, FraschkeM, Wolansky D, Kulse P, Kaletta U, Wolff A, Laux EM, Bier FF, Hölzel R: Label-free immobilization of nano-particles on silicon based electrodes for single-biomolecule studies, Proc. Int. Conf. Biomed. Electron. Devices, 176-180
  • Füllbrandt M, Ermilova E, Asadujjaman A, Hölzel R, Bier FF, von Klitzing R, Schönhals A. Dynamics of Linear Poly(N-isopropylacrylamide) in Water around the Phase Transition Investigated by Dielectric Relaxation Spectroscopy. J Phys Chem B. 118 (2014): 3750-3759.
  • Laux EM, Kaletta UC, Bier FF, Wenger C, Hölzel R. Functionality of dielectrophoretically immobilized enzyme molecules. Electrophoresis. 35 (2014): 459-466.
  • Otto S, Kaletta U, Bier FF, Wenger C, Hölzel R. Dielectrophoretic immobilisation of antibodies on microelectrode arrays. Lab Chip. 14 (2014): 998-1004.
  • Linck L, Reiß E, Bier F, Resch-Genger U. Direct labeling rolling circle amplification as a straightforward signal amplification technique for biodetection formats. Analytical Methods 4 (2012): 1215-1220.
  • Breitenstein M, Nielsen PE, Hölzel R, Bier FF. DNA-nanostructure-assembly by sequential spotting. J Nanobiotechnology 9 (2011): e54.
  • Reiß E, Hölzel R, Bier FF. Preparation of DNA Nanostructures with Repetitive Binding Motifs by Rolling Circle Amplification. Methods Mol Biol. 749 (2011):151-168.
  • Stanke S, Bier FF, Hölzel R. Fluid streaming above interdigitated electrodes in dielectrophoresis experiments. Electrophoresis 32 (2011): 2448-2455.
  • Breitenstein M, Hölzel R, Bier FF. Immobilization of different biomolecules by atomic force microscopy. J Nanobiotechnology. 8 (2010): e10.
  • Henning A, Bier FF, Hölzel R. Dielectrophoresis of DNA: Quantification by impedance measurements. Biomicrofluidics 4 (2010):, 022803 (9pp.) highly accessed.

 

Patente

  • Bier F, Hölzel R. Method and device for directed immobilisation of nano-and micro-objects on a substrate surface, immobilisates obtained thereby, and use thereof. EP 12 775 135.2 Priority 15.11.2011