in-vitro-Diagnostik-Plattform für den Point-of-Care

Ein offenes Konzept für Vielseitigkeit

ivD-Plattform | Anwendung
© Fraunhofer IZI-BB, Jochen Zick
ivD-Plattform | Anwendung

Die Fraunhofer ivD-Plattform besteht aus einer kreditkartengroßen Kartusche (Lab-on-a-Chip) und einer Basisstation. Blut oder andere biologische Flüssigkeiten können direkt auf die Kartusche gegeben werden und anschließend in der Basisstation automatisch innerhalb von 10 bis 15 Minuten analysiert werden. Durch die Verwendung von Microarrays ist eine Multiparameter-Diagnostik möglich, wobei verschiedene Fängermoleküle verwendet werden können, wie z.B. Antikörper, Proteine, Peptide, Glycane oder Oligonukleotide. Das Institut bietet Kunden und Partnern den Transfer bestehender Tests (z.B. ELISAs, DNA-Microarrays, etc.) auf die ivD-Plattform, deren Optimierung und Technische Verifizierung bis hin zur ivD-Zulassung an.

ivD-Plattform
© Fraunhofer IZI-BB, Pierre Tangermann
ivD-Plattform

  • Assayentwicklung für serologische Assays
  • Assayentwicklung für Blut-, Urin-, Salivaproben und andere Medien
  • Multiplexassays für bis zu 500 Analyte
  • DNA-basierte Assays (Microarray)
  • PCR und RT-PCR-Entwicklung
  • Antikörperassays
  • Dispensieren diverser biologischer Proben in unterschiedlichen Volumina/Viskositäten
  • Kopplung von DNA, RNA, Proteinen und Peptiden an modifizierten Oberflächen, (Glas, Gold, Silizium, Polymersubstrate etc.)
  • Aptamere für In-vitro-Diagnostik
  • Biomolekulare Interaktionsanalyse, kinetische Analyse
  • Kinetisches Ranking von Interaktionen mittels Biacore-Flex-chip (Peptid-Antikörper, Protein-DNA etc.)
  • Charakterisierung und Validierung von Antikörpern (Kreuzreaktivität, Spezifität)
  • Serumscreening
  • Aptamerassays
  • Assayentwicklung für Biochips, Mikroarraybasierte Assays
  • Machbarkeitsstudien für alternative Detektionssysteme

Geräte

  • S1/S2-Labore, Assayentwicklungen für Pathogendetektion
  • Multiplexassays
  • Mikroarray-Facilities, Spotten: Biochip-Arrayer zur Herstellung von Biochips (Genpix, non-Kontakt, Scienion S5 & S7, TopSpotter, i2 von M2)
  • Scannertechnologie (Axon, Tecan)
  • Markierungsfreie Biosensoren (Biacore Flexchip, T100)
  • Fluoreszenz-MTP-Reader
  • Nanoliter-Mikrodispenser
  • Hybridisierstation zur halbautomatischen Mikroarrayprozessierung

  • Peter, H., Mattig, E., Guest, P.C., Bier, F.F. (2022). Lab-on-a-Chip Immunoassay for Prediction of Severe COVID-19 Disease. In: Guest, P.C. (eds) Multiplex Biomarker Techniques. Methods in Molecular Biology, vol 2511. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2395-4_17
  • Mattig, E., Guest, P.C., Peter, H. (2022). A Rapid User-Friendly Lab-on-a-Chip Microarray Platform for Detection of SARS-CoV-2 Variants. In: Guest, P.C. (eds) Multiplex Biomarker Techniques. Methods in Molecular Biology, vol 2511. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2395-4_9
  • Jnana, A., Muthuraman, V., Varghese, V.K., Chakrabarty, S., Murali, T.S., Ramachandra, L., Shenoy, K.R., Rodrigues, G.S., Dendukuri, D., Morschhauser, A., Nestler, J., Peter, H., Bier, F.F., Satyamoorthy, K. (2020). Microbial Community Distribution and Core Microbiome in Successive Wound Grades of Individuals with Diabetic Foot Ulcers. Applied and Environmental Microbiology 2020-03-02 86(6). https://doi.org/10.1128/AEM.02608-19
  • Hays, J.P., Mitsakakis, K., Luz, S., van Belkum, A., Becker, K., van den Bruel, A., Harbarth, S., Rex, J.H., Simonsen, G.S., Werner G., Di Gregory, V., Lüdke, G., van Staa, T., Moran-Gilad, J., Bachmann, T.T., on behalf of the JPIAMR AMR-RDT consortium, The successful uptake and sustainability of rapid infectious disease and antimicrobial resistance point-of-care testing requires a complex ‘mix-and-match’ implementation package. European Journal of Clinical Microbiology & Infectious Diseases volume 38, pages 1015–1022 (2019). https://doi.org/10.1007/s10096-019-03492-4
  • van Belkum A, Bachmann TT, Luedke G, Lisby G, Kahlmeter G, Mohess A, Becker K, Hays JP, Woodford N, Mitsakakis K, Moran-Gilad J, Vila J, Peter H, Rex J, Dunne WM & the JPIAMR AMR-RDT Working Group on Antimicrobial Resistance and Rapid Diagnostic Testing, Developmental roadmap for antimicrobial susceptibility testing systems, Nature Reviews Microbiology, 17, 51–62 (2019). https://doi.org/10.1038/s41579-018-0098-9
  • Nestler, J., Peter, H., Bier, F.F. (2018). Biophotonics, Optik&Photonik. Towards a Fully Integrated Lab-On-A-Chip. Volume13, Issue1, February 2018, Pages 28-31, https://doi.org/10.1002/opph.201800004
  • Peter, H. et al. (2018). Lab-on-a-Chip Device for Rapid Measurement of Vitamin D Levels. In: Guest, P. (eds) Investigations of Early Nutrition Effects on Long-Term Health. Methods in Molecular Biology, vol 1735. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7614-0_35
  • Soria, J., Acera, A., Merayo-LLoves, J., Durán, J.A., González, N., Rodriguez, S., Bistolas, N., Schumacher, S., Bier, F.F., Peter, H., Stöcklein, W. & Suárez, T. Tear proteome analysis in ocular surface diseases using label-free LC-MS/MS and multiplexed-microarray biomarker validation. Sci Rep 7, 17478 (2017). https://doi.org/10.1038/s41598-017-17536-2
  • Peter, H., Wienke, J., Guest, P.C., Bistolas, N., Bier, F.F. (2017). Lab-on-a-Chip Proteomic Assays for Psychiatric Disorders. In: Guest, P. (eds) Proteomic Methods in Neuropsychiatric Research. Advances in Experimental Medicine and Biology(), vol 974. Springer, Cham. https://doi.org/10.1007/978-3-319-52479-5_33
  • Peter, H., Wienke, J., Bier, F.F. (2017). Lab-on-a-Chip Multiplex Assays. In: Guest, P.C. (eds) Multiplex Biomarker Techniques. Methods in Molecular Biology, vol 1546. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-6730-8_25.
  • Kersting S, Rausch V, Bier FF, von Nickisch-Rosenegk M. Multiplex isothermal solid-phase recombinase polymerase amplification for the specific and fast DNA-based detection of three bacterial pathogens. Mikrochim Acta. 2014; 181(13-14):1715-1723. https://doi.org/10.1007/s00604-014-1198-5. Epub 2014 Feb 18. PMID: 25253912; PMCID: PMC4167443.
  • Kersting, S., Rausch, V., Bier, F.F. et al. Rapid detection of Plasmodium falciparum with isothermal recombinase polymerase amplification and lateral flow analysis. Malar J 13, 99 (2014). https://doi.org/10.1186/1475-2875-13-99.
  • Kozma P, Kehl F, Ehrentreich-Förster E, Stamm C, Bier FF. Integrated planar optical waveguide interferometer biosensors: a comparative review. Biosens Bioelectron. 2014 Aug 15;58:287-307. https://doi.org/10.1016/j.bios.2014.02.049. Epub 2014 Feb 28. PMID: 24658026.
  • Scheller FW, Yarman A, Bachmann T, Hirsch T, Kubick S, Renneberg R, Schumacher S, Wollenberger U, Teller C, Bier FF. Future of biosensors: a personal view. Adv Biochem Eng Biotechnol. 2014; 140:1-28. https://doi.org/10.1007/10_2013_251. PMID: 24196315.
  • Pierce KE, Peter H, Bachmann TT, Volpe C, Mistry R, Rice JE, Wangh LJ. Rapid detection of TEM-type extended-spectrum β-lactamase (ESBL) mutations using lights-on/lights-off probes with single-stranded DNA amplification. J Mol Diagn. 2013 May;15(3):291-8. https://doi.org/10.1016/j.jmoldx.2013.02.002. Epub 2013 Mar 19. PMID: 23518216.
  • Schumacher S, Lüdecke C, Ehrentreich-Förster E, Bier FF. Platform technologies for molecular diagnostics near the patient's bedside. Adv Biochem Eng Biotechnol. 2013; 133:75-87. https://doi.org/10.1007/10_2012_165. PMID: 23192590.
  • Kozma P, Lehmann A, Wunderlich K, Michel D, Schumacher S, Ehrentreich-Förster E, Bier FF. A novel handheld fluorescent microarray reader for point-of-care diagnostic. Biosens Bioelectron. 2013 Sep 15; 47:415-20. https://doi.org/10.1016/j.bios.2013.03.043. Epub 2013 Mar 29. PMID: 23612063.
  • Peter H, Berggrav K, Thomas P, Pfeifer Y, Witte W, Templeton K, Bachmann TT. Direct detection and genotyping of Klebsiella pneumoniae carbapenemases from urine by use of a new DNA microarray test. J Clin Microbiol. 2012 Dec;50(12):3990-8. https://doi.org/10.1128/JCM.00990-12. Epub 2012 Oct 3. PMID: 23035190; PMCID: PMC3502996.
  • Bier FF, Schumacher S. Integration in bioanalysis: technologies for point-of-care testing. Adv Biochem Eng Biotechnol. 2013; 133:1-14. https://doi.org/10.1007/10_2012_164. PMID: 23344629.
  • Schumacher S, Sartorius D, Ehrentreich-Förster E, Bier FF. Miniaturization for Point-of-Care Analysis: Platform Technology for Almost Every Biomedical Assay. EJIFCC. 2012 Oct 12; 23(3):70-5. PMID: 27683418; PMCID: PMC4975254. http://www.ncbi.nlm.nih.gov/pmc/articles/pmc4975254/
  • Schumacher S, Nestler J, Otto T, Wegener M, Ehrentreich-Förster E, Michel D, Wunderlich K, Palzer S, Sohn K, Weber A, Burgard M, Grzesiak A, Teichert A, Brandenburg A, Koger B, Albers J, Nebling E, Bier FF. Highly-integrated lab-on-chip system for point-of-care multiparameter analysis. Lab Chip. 2012 Feb 7;12(3):464-73. https://doi.org/10.1039/C1LC20693A. Epub 2011 Oct 28. PMID: 22038328.
  • Reiss E, Hölzel R, Bier FF. Preparation of DNA nanostructures with repetitive binding motifs by rolling circle amplification. Methods Mol Biol. 2011;749:151-68. https://doi.org/10.1007/978-1-61779-142-0_11. PMID: 21674371.
  • Zhao X, Nothwehr S, Lara-Lemus R, Zhang BY, Peter H, Arvan P. Dominant-negative behavior of mammalian Vps35 in yeast requires a conserved PRLYL motif involved in retromer assembly. Traffic. 2007 Dec;8(12):1829-1840. https://doi.org/10.1111%2Fj.1600-0854.2007.00658.x. Epub 2007 Oct 17. PMID: 17916227; PMCID: PMC2532708.
  • Restrepo R, Zhao X, Peter H, Zhang BY, Arvan P, Nothwehr SF. Structural features of vps35p involved in interaction with other subunits of the retromer complex. Traffic. 2007 Dec;8(12):1841-1853. https://doi.org/10.1111%2FJ.1600-0854.2007.00659.X. Epub 2007 Oct 17. PMID: 17892535; PMCID: PMC2504507.