Dr. Marcus Menger

is acting head of the Cell-Free and Cell-Based Bioproduction department and of the Functional Nucleic Acids - Aptamers working group.


Scientific focus and expertise:

Academic CV
Since 05/2022 Head of Department (comm.) "Cell-Free and Cell-Based Bioproduction" at Fraunhofer IZI-BB, Potsdam
Since 03/2015

Group Manager "Functional Nucleic Acids - Aptamers" at Fraunhofer IZI-BB, Potsdam

2009 – 2015 Head of Department "Functional Nucleic Acids - Aptamers" at RiNA GmbH, Berlin
2002 – 2009 Research associate in the department "Functional RNA" at RiNA GmbH, Berlin
2002 Research associate in the department "Analytical Biochemistry" at the Institute of Biochemistry and Biology at the University of Potsdam
2001 – 2002 Project Manager "PCR" at ARCENSUS AG, Berlin
2000 – 2001 Research associate at GAIFAR (German-American Institute for Applied Biomedical Research) GmbH, Potsdam, Germany



PhD (Dr. rer. nat.) at the Georg-August University in Göttingen,

Subject: "2-Aminopurine as a fluorescence indicator for the analysis of the structure and dynamics of oligoribonucleic acids and Hammerhead ribozymes".

1993 - 1999

Research associate in the departments "Biochemical Kinetics" and "Biomolecular Dynamics" at the Max Planck Institute for Biophysical Chemistry, Göttingen, Germany


Diploma in Chemistry at the Georg-August University in Göttingen,

Subject: "Structure and dynamics of DNA double helices".

1988 - 1994 Diplom studies in Chemistry at the University of Göttingen
1988 Abitur, Städtisches Gymnasium, Beverungen
Director on the Executive Committee of the International Society for Aptamers (INSOAP)
Member of the German Nucleic Acid Chemistry Association (DNG)
Member of the Society for Biochemistry and Molecular Biology (GBM)
Member of the German Chemical Society (GDCh)

Marcus M. Menger - ORCID: 0000-0002-6856-6663
  • Weidemann, H., Feger, D., Ehlert, J. E., Menger, M. M., & Krempien, R. C. (2023). Markedly divergent effects of Ouabain on a Temozolomide-resistant (T98G) vs. a Temozolomide-sensitive (LN229) Glioblastoma cell line. Discov Oncol, 14(1), 27. https://doi.org/10.1007/s12672-023-00633-2
  • Sabrowski, W., Stöcklein, W. F. M., & Menger, M. M. (2023). Immobilization-Free Determination of Dissociation Constants Independent of Ligand Size Using MicroScale Thermophoresis. In G. Mayer & M. M. Menger (Eds.), Nucleic Acid Aptamers: Selection, Characterization, and Application (Methods in Molecular Biology, vol 2570, 2 ed., pp. 129-140). Humana, New York. https://doi.org/10.1007/978-1-0716-2695-5_10
  • Mayer, G., & Menger, M. M. (2023). Preface. In G. Mayer & M. M. Menger (Eds.), Nucleic Acid Aptamers: Selection, Characterization, and Application (Methods in Molecular Biology, vol 2570, 2 ed., pp. V-VI). Humana, New York. https://doi.org/10.1007/978-1-0716-2695-5
  • Kerler, Y., Sass, S., Hille, C., & Menger, M. M. (2023). Determination of Aptamer Structure Using Circular Dichroism Spectroscopy. In G. Mayer & M. M. Menger (Eds.), Nucleic Acid Aptamers: Selection, Characterization, and Application (Methods in Molecular Biology, vol 2570, 2 ed., pp. 119-128). Humana, New York. https://doi.org/10.1007/978-1-0716-2695-5_9
  • Dreymann, N., Möller, A., & Menger, M. M. (2023). Label-Free Determination of the Kinetic Parameters of Protein-Aptamer Interaction by Surface Plasmon Resonance. In G. Mayer & M. M. Menger (Eds.), Nucleic Acid Aptamers: Selection, Characterization, and Application (Methods in Molecular Biology, vol 2570, 2 ed., pp. 141-153). Humana, New York. https://doi.org/10.1007/978-1-0716-2695-5_11
  • Schmidt, C., Kammel, A., Tanner, J. A., Kinghorn, A. B., Khan, M. M., Lehmann, W., Menger, M., Schedler, U., Schierack, P., & Rödiger, S. (2022). A multiparametric fluorescence assay for screening aptamer–protein interactions based on microbeads. Scientific Reports, 12(1), 2961. https://doi.org/10.1038/s41598-022-06817-0
  • Sabrowski, W., Dreymann, N., Möller, A., Czepluch, D., Albani, P. P., Theodoridis, D., & Menger, M. M. (2022). The use of high-affinity polyhistidine binders as masking probes for the selection of an NDM-1 specific aptamer. Scientific Reports, 12(1), 7936. https://doi.org/10.1038/s41598-022-12062-2
  • Dreymann, N., Wuensche, J., Sabrowski, W., Moeller, A., Czepluch, D., Vu Van, D., Fuessel, S., & Menger, M. M. (2022). Inhibition of Human Urokinase-Type Plasminogen Activator (uPA) Enzyme Activity and Receptor Binding by DNA Aptamers as Potential Therapeutics through Binding to the Different Forms of uPA. International Journal of Molecular Sciences, 23(9). https://doi.org/10.3390/ijms23094890
  • Dreymann, N., Sabrowski, W., Danso, J., & Menger, M. M. (2022). Aptamer-Based Sandwich Assay Formats for Detection and Discrimination of Human High- and Low-Molecular-Weight uPA for Cancer Prognosis and Diagnosis. Cancers, 14(21). https://doi.org/10.3390/cancers14215222
  • Kutovyi, Y., Li, J., Zadorozhnyi, I., Hlukhova, H., Boichuk, N., Yehorov, D., Menger, M., &. Vitusevich, S. (2020). Highly Sensitive and Fast Detection of C-Reactive Protein and Troponin Biomarkers Using Liquidgated Single Silicon Nanowire Biosensors. MRS Advances, 5(16), 835-846. https://doi.org/10.1557/adv.2020.60
  • Kutovyi, Y., Hlukhova, H., Boichuk, N., Menger, M., Offenhäusser, A., & Vitusevich, S. (2020). Amyloid-beta peptide detection via aptamer-functionalized nanowire sensors exploiting single-trap phenomena. Biosensors and Bioelectronics, 154, 112053. https://doi.org/https://doi.org/10.1016/j.bios.2020.112053
  • Sass, S., Stöcklein, W. F. M., Klevesath, A., Hurpin, J., Menger, M., & Hille, C. (2019). Binding affinity data of DNA aptamers for therapeutic anthracyclines from microscale thermophoresis and surface plasmon resonance spectroscopy. Analyst, 144(20), 6064-6073. https://doi.org/10.1039/C9AN01247H
  • Hlukhova, H., Menger, M., Offenhäusser, A., & Vitusevich, S. (2018). Highly Sensitive Aptamer-Based Method for the Detection of Cardiac Biomolecules on Silicon Dioxide Surfaces. MRS Advances, 3(27), 1535-1541. https://doi.org/10.1557/adv.2018.332
  • Czepluch, D., & Menger, M. (2018). Highly specific aptamers for analytics and therapeutics. q&more. http://q-more.chemeurope.com/q-more-articles/259/highly-specific-aptamers-for-analytics-and-therapeutics.html
  • Bahner, N., Reich, P., Frense, D., Menger, M., Schieke, K., & Beckmann, D. (2018). An aptamer-based biosensor for detection of doxorubicin by electrochemical impedance spectroscopy. Analytical and Bioanalytical Chemistry, 410(5), 1453-1462. https://doi.org/10.1007/s00216-017-0786-8
  • Menger, M., Yarman, A., Erdőssy, J., Yildiz, H. B., Gyurcsányi, R. E., & Scheller, F. W. (2016). Mips and Aptamers for Recognition of Proteins in Biomimetic Sensing. Biosensors, 6(3). https://doi.org/10.3390/bios6030035
  • Hacht, A. v., Seifert, O., Menger, M., Schütze, T., Arora, A., Konthur, Z., Neubauer, P., Wagner, A., Weise, C., &. Kurreck, J. (2014). Identification and characterization of RNA guanine-quadruplex binding proteins. Nucleic Acids Research, 42(10), 6630-6644. https://doi.org/10.1093/nar/gku290
  • Schütze, T., Wilhelm, B., Greiner, N., Braun, H., Peter, F., Mörl, M., Erdmann, V.A., Lehrach, H., Konthur, Z., Menger, M., Arndt, P.F., Glökler, J. (2011). Probing the SELEX Process with Next-Generation Sequencing. PLOS ONE, 6(12), e29604. https://doi.org/10.1371/journal.pone.0029604
  • Schütze, T., Arndt, P. F., Menger, M., Wochner, A., Vingron, M., Erdmann, V. A., Lehrach, H., Kaps, C., & Glökler, J. (2010). A calibrated diversity assay for nucleic acid libraries using DiStRO—a Diversity Standard of Random Oligonucleotides. Nucleic Acids Research, 38(4), e23-e23. https://doi.org/10.1093/nar/gkp1108
  • Menger, M. (2009). Aptamere – Generierung und Applikation. GenomXPress 1.09, 9(1), 17-19.
  • Wochner, A., Menger, M., Orgel, D., Cech, B., Rimmele, M., Erdmann, V. A., & Glökler, J. (2008). A DNA aptamer with high affinity and specificity for therapeutic anthracyclines. Analytical Biochemistry, 373(1), 34-42. https://doi.org/https://doi.org/10.1016/j.ab.2007.09.007
  • Wochner, A., Menger, M., & Rimmele, M. (2007). Characterisation of aptamers for therapeutic studies. Expert Opinion on Drug Discovery, 2(9), 1205-1224. https://doi.org/10.1517/17460441.2.9.1205
  • Wochner, A., Cech, B., Menger, M., Erdmann, V. A., & Glökler, J. (2007). Semi-automated selection of DNA aptamers using magnetic particle handling. BioTechniques, 43(3), 344-353. https://doi.org/10.2144/000112532
  • Menger, M., Glökler, J., & Rimmele, M. (2006). Application of Aptamers in Therapeutics and for Small-Molecule Detection. In V. Erdmann, J. Barciszewski, & J. Brosius (Eds.), RNA Towards Medicine (pp. 359-373). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-27262-3_18
  • Menger, M., Eckstein, F., & Porschke, D. (2000). Dynamics of the RNA Hairpin GNRA Tetraloop. Biochemistry, 39(15), 4500-4507. https://doi.org/10.1021/bi992297n
  • Menger, M., Eckstein, F., & Porschke, D. (2000). Multiple conformational states of the hammerhead ribozyme, broad time range of relaxation and topology of dynamics. Nucleic Acids Research, 28(22), 4428-4434. https://doi.org/10.1093/nar/28.22.4428
  • Menger, M. (1999). 2-Aminopurin als Fluoreszenzindikator zur Analyse der Struktur und Dynamik von Oligoribonukleinsäuren und Hammerhead-Ribozymen [PhD Thesis, Georg-August-Universität]. Göttingen, Germany.
  • Menger, M., Tuschl, T., Eckstein, F., & Porschke, D. (1996). Mg2+-Dependent Conformational Changes in the Hammerhead Ribozyme. Biochemistry, 35(47), 14710-14716. https://doi.org/10.1021/bi960440w




Methods for the development of functional nucleic acids for environmental and food analysis, diagnostics and therapeutics:

  • Process for the generation of high affinity and high specificity RNA and DNA aptamers.
    • Automated in vitro selection process (SELEX) for enrichment of target affinity nucleic acid pools
    • Monitoring and managing procedures for the SELEX process
  • Sequence analysis of nucleic acids
    • Diversity analysis of nucleic acid pools (DANA)
    • Next generation sequencing (NGS) of nucleic acid pools
    • Bioinformatic sequence analysis
  • Characterization and optimization of nucleic acids
    • Fluorescence-based aptamer binding assay (FLAA)
    • Surface plasmon resonance (SPR) binding studies
    • Microscale thermophoresis (MST) binding studies
    • Isothermal titration calorimetry (ITC) binding studies
    • Flow cytometry (FACS) binding studies
    • Initial structural analysis of nucleic acids
  • Synthesis of nucleic acids, in particular RNA and DNA aptamers, including their chemical modification
    • Attachment of functional groups and spacer molecules
    • Incorporation of nucleotide analogs
  • Development of nucleic acid applications
    • Aptamer-based assays (ELONA, ELASA, ALISA, etc.)
    • Aptamer-based strip tests (LFD)
    • Aptamer-based biosensors (aptasensors)
    • Aptamer-based purification methods
    • Molecular Beacons Assays