Dr. Michael Kirschbaum

Dr. Michael Kirschbaum studied biology with a focus on neurobiology, physics and biochemistry at the University of Tübingen. After graduating in 2005, he joined the Lab-On-Chip Technologies group at the Fraunhofer Institute in Potsdam, where he received his PhD in 2009 and has headed the Microfluidic Cell Processing & Cell Analytics group since 2011.

Michael Kirschbaum - ORCID: 0000-0003-3686-8349
  • Habaza M, Kirschbaum M, Guernth-Marschner C, Dardikman G, Barnea I, Korenstein R, Duschl C, Shaked NT. Rapid 3D Refractive-Index Imaging of Live Cells in Suspension without Labeling Using Dielectrophoretic Cell Rotation. Adv. Sci. (2017), 4, 1600205
  • Guernth-Marschner C, Kirschbaum M, Jaeger MS, Duschl C. Electrofusion of cells in microdevices. Cell News. (2013), 39(3), 14-18.
  • Kirschbaum M, Gürnth-Marschner CR, Cherré S, de Pablo Peña A, Jäger MS, Kroczek RA, Schnelle T, Müller T, Duschl C. Highly controlled single-cell electrofusion in dielectrophoretic field cages. Lab on a Chip. (2012), 12, S. 443-450.
  • Guido I, Xiong C, Jaeger MS, Duschl C. Microfluidic system for cell mechanics analysis through dielectrophoresis. Microelectron Eng. (2012), 97:379-382
  • Boettcher M, Schmidt S, Latz A, Jaeger MS, Stuke M, Duschl C. Filtration at the microfluidic level: enrichment of nanoparticles by tunable filters. J Phys Condens Mat. (2011), 23, 324101
  • Guido I, Jaeger MS, Duschl C. Dielectrophoretic stretching of cells allows for characterization of their mechanical properties. Eur Biophys J. (2011), 40:281-288.
  • Guido I, Jaeger MS, Duschl C. Influence of medium consumption on cell elasticity. Cytotechnology. (2010), 62, 257-263.
  • Kirschbaum M, Jaeger MS, Duschl C. Correlating short-term Ca2+ responses with long-term protein expression after activation of single T cells. Lab Chip. (2009), 9, 3517-3525.
  • Kirschbaum M, Jaeger MS, Schenkel T, Breinig T, Meyerhans A, Duschl C. T cell activation on a single-cell level in dielectrophoresis-based microfluidic devices. J Chromatogr A. (2008), 1202, 83–89.
  • Böttcher M, Jäger MS, Kirschbaum M, Müller T, Schnelle T, Duschl C. Gravitation-driven stress-reduced cell handling. Anal Bioanal Chem. (2008), 390, 857-863.
  • Storn V, Kirschbaum M, Schlosshauer B, Mack AF, Fricke C. Electrical stimulation-induced release of beta-endorphin from genetically modified neuro-2a cells. Cell Transplant. (2008), 17(5):543-8
  • Jaeger MS, Uhlig K, Schnelle T, Mueller T. Contact-free single-cell cultivation by negative dielectrophoresis. J Phys D Appl Phys. (2008), 41:175502.
  • Jaeger MS, Mueller T, Schnelle T. Thermometry in dielectrophoresis chips for contact-free cell handling. J Phys D Appl Phys. (2007), 40:95–105
  • Böttcher M, Jäger MS, Riegger L, Ducrée J, Zengerle R, Duschl C. Lab-on-chip-based cell separation by combining dielectrophoresis and centrifugation. BRL. (2006), 1(4):443-451.

  • Design and construction of chip-based microsystems
  • Numerical modeling of microsystems using the finite element method
  • Washing, characterization, sorting and stimulation of rare and valuable cell samples (e.g. stem cells, circulating tumor cells)
  • Non-contact handling of single cells (e.g. cell selection, cell fusion, cell rotation, cell stimulation, cell characterization, etc.)
  • Cloning of previously characterized or processed single cells