Microalgae as a Bioresource

CCCryo, which is perhaps the most unique strain collection in terms of scope and diversity, offers the basis for using cryophilic (= cold-loving) freshwater microalgae – snow and permafrost algae – in an industrial context.

Cryophilic algae are exposed to a variety of extreme stress factors in their natural habitats. First and foremost, these include low temperatures, intense light and UV radiation, dehydration and greatly varying nutrient availability and salt content. The goal is to take the isolates collected from polar expeditions and thus their developed special enzymes and metabolites for use in industrial applications.

To this end, suitable photobioreactors for the sterile mass cultivation of autotrophic organisms as well as the relevant processes are being developed for bioproduction on an industrial scale.


  • creening of the CCCryo strains for customer-specific substances. More information on strain details and ordering information at www.cccryo.fraunhofer.de
  • Bioprospecting for suitable organisms for special applications
  • Development of production processes
  • Production of raw mass according to SOPs, including high-purity with microbiological quality control in compliance with ISO standards

Photobioreactor development for high purity algal biomass.

Vertical glass tube photobioreactors developed at Fraunhofer IZI-BB for sterile production of algae biomass in compliance with Good Laboratory Practices.
© Fraunhofer IZI-BB, Tobias Marschner
Vertical glass tube photobioreactors developed at Fraunhofer IZI-BB for sterile production of algae biomass in compliance with Good Laboratory Practices.

The Institute develops and operates glass tube photobioreactors for the industrial-scale bioproduction of high-purity, mass cultivation of phototrophic organisms. These systems have been used successfully by the institute and industrial customers since 2011. The individual modules of the reactors, each with a working volume of up to 60 l, allow a broad spectrum of phototrophic microorganisms to be used for biotechnology purposes and can be customized to meet specific production requirements. They are operated according to SOPs. Strict microbiological quality control protocols in compliance with ISO standards ensure uncontaminated biomass for sensitive applications.

Pigments from Algae and Cyanobacteria as Natural Dye for the Food Industry

Snow and permafrost algae typically produce secondary carotenoids and other antioxidants, such as alpha-tocopherol (vitamin E). In their natural environments, this enables them react to stresses from low nutrient availability as well as intense light and UV radiation. The various algae strains exhibit some very different pigment patterns.

Carotenoids in snow and permafrost algae
© Fraunhofer IZI-BB, Thomas Leya
Carotenoids in snow and permafrost algae
Cyanophyceen pigments
© Fraunhofer IZI-BB, Thomas Leya
Cyanophyceen pigments

In mass production, the process is typically divided into two phases. The first involves producing a large amount of biomass under optimum nutrient and light conditions. In the second phase, specific stressors are applied to trigger the synthesis of secondary carotenoids. This usually accumulates large quantities of lipids containing fat-soluble carotenoids.

Depending on the strain of algae, the algae mass contains various levels of

  • astaxanthin
  • alpha and beta carotene
  • lutein
  • alpha-tocopherol
  • violaxanthin
  • antheraxanthin
  • zeaxanthin
  • echinenone
  • hydroxyechinenone
  • neoxanthin
  • adinoxanthin
  • canthaxanthin

In industrial applications, the most interesting of these are lutein, astaxanthin and alpha-tocopherol (vitamin E) for food supplements as well as for the animal feed and cosmetics industries.

Blue, pink and violet dyes, on the other hand, are produced from cyanobacteria in a single phase. These more water-soluble pigments are especially well-suited for the food industry.

The following resources and equipment are available to the working group and cooperation partners:

  • CCCryo algae culture collection containing over 550 isolates of cryophilic organisms (algae, cyanobacteria, fungi, yeasts, bacteria and mosses)
    The database of the CCCryo strain collection as well as ordering information are available on the website. The algae are available to public and industrial research institutions.
  • In-situ sterilizable glass tube photobioreactors in multiloop- and double-helix design with airlift principle (1 x 60 L, 2 x 30 L, 3 x 25 L, 6 x 10 L), total volume in sterile production process = approx. 255 L, with an annual capacity of approx. 100 kg fresh algae mass
  • Cryomicroscope with digital image processing
  • Gas chromatograph with FID detector (Agilent 7890B)
  • Element analyzer (EuroEA CNS)
  • Pigment analytics (HPLC)

  • German Research Centre for Geosciences GFZ, Potsdam (Germany)
  • German Aerospace Center (DLR), Berlin (Germany)
  • Mibelle Biochemistry, Mibelle AG, Buchs (Switzerland)
  • Collection of Algal Cultures SAG, Georg-August-University Göttingen., Göttingen (Germany)
  • University of California UCLA, Berkeley (U.S.A.)

  • Schimani, K., Abarca, N., Zimmermann, J., Skibbe, O., Jahn, R., Kusber, W.-H., Leya, T., & Mora, D. (2024 (ahead of print 2023)). Molecular phylogenetics coupled with morphological analyses of Arctic and Antarctic strains place Chamaepinnularia (Bacillariophyta) within the Sellaphoraceae. Fotteahttps://doi.org/10.5507/fot.2023.002
  • Liu, Y., Jeraldo, P., Herbert, W., McDonough, S., Eckloff, B., Schulze-Makuch, D., de Vera, J.-P., Cockell, C., Leya, T., Baqué, M., Jen, J., & Walther-Antonio, M. (2022, 2022/05/20/). Whole genome sequencing of cyanobacterium Nostoc sp. CCCryo 231-06 using microfluidic single cell technology. iScience, 25(5), 104291. https://doi.org/10.1016/j.isci.2022.104291
  • Liu, Y., Jeraldo, P., Herbert, W., McDonough, S., Eckloff, B., de Vera, J.-P., Cockell, C., Leya, T., Baqué, M., Jen, J., Schulze-Makuch, D., & Walther-Antonio, M. (2022). Non-random genetic alterations in the cyanobacterium Nostoc sp. exposed to space conditions. Scientific Reports, 12, 12580. https://doi.org/https://rdcu.be/cSdb9
  • Leya, T. (2022, 2022/12/31). The CCCryo Culture Collection of Cryophilic Algae as a valuable bioresource for algal biodiversity and for novel, industrially marketable metabolites. Applied Phycology, 3(1), 167-188. https://doi.org/10.1080/26388081.2020.1753572
  • Yakimovich, K. M., Gauthier, N. P. G., Engstrom, C. B., Leya, T., & Quarmby, L. M. (2021, 2021/10/01). A molecular analysis of microalgae from around the globe to revise Raphidonema (Trebouxiophyceae, Chlorophyta) [https://doi.org/10.1111/jpy.13183]. Journal of Phycology, 57(5), 1419-1432. https://doi.org/https://doi.org/10.1111/jpy.13183
  • Procházková, L., Leya, T., Křížková, H., & Nedbalová, L. (2019). Sanguina nivaloides and Sanguina aurantia gen. et spp. nov. (Chlorophyta): the taxonomy, phylogeny, biogeography and ecology of two newly recognised algae causing red and orange snow. FEMS Microbiology Ecology, 95(6), fiz064. https://doi.org/10.1093/femsec/fiz064
  • Leya, T. (2019, 10.01.2019). Die blutrote Schneealge ist Alge des Jahres 2019 [Interview]. radio and pocast; Kulturradio, Rundfunk Berlin Brandenburg. https://www.kulturradio.de/programm/schema/sendungen/kulturradio_am_vormittag/archiv/20190110_0905/wissen_0910.html
  • de Vera, J.-P., Alawi, M., Backhaus, T., Baqué, M., Billi, D., Böttger, U., Berger, T., Cockell, C., Demets, R., de la Torre Noetzel, R., Edwards, H., Elsaesser, A., Fagliarone, C., Fiedler, A., Foing, B., Foucher, F., Fritz, J., Hanke, F., Herzog, T., Horneck, G., Hübers, H.-W., Huwe, B., Joshi, J., Kozyrovska, N., Kruchten, M., Lasch, P., Lee, N., Leya, T., Lorek, A., Moritz, S., Möller, R., Olsson-Francis, K., Onofri, S., Ott, S., Pacelli, C., Podolich, O., Martínez-Frías, J., Rabbow, E., Reitz, G., Rettberg, P., Reva, O., Rothschild, L., Sancho, L. G., Schulze-Makuch, D., Selbmann, L., Serrano, P., Szewzyk, U., Verseux, C., Wagner, D., Westall, F., Wolter, D., & Zucconi, L. (2019). Limits of life and the habitability of Mars: The ESA space experiment BIOMEX on the ISS. Astrobiology, 19(2), 145-157. https://doi.org/10.1089/ast.2018.1897
  • Liu, Y., Schulze-Makuch, D., de Vera, J.-P., Cockell, C., Leya, T., Baqué, M., & Walther-Antonio, M. (2018). The development of an effective bacterial single-cell lysis method suitable for whole genome amplification in microfluidic platforms. Micromachines, 9(8), art. no. 367. https://doi.org/10.3390/mi9080367
  • Baqué, M., Hanke, F., Böttger, U., Leya, T., Moeller, R., & Vera, J.-P. (2018). Protection of cyanobacterial carotenoids' Raman signatures by Martian mineral analogues after high-dose gamma irradiation. Journal of Raman Spectroscopy, 49(10), 1617-1627. https://doi.org/doi:10.1002/jrs.5449
  • Leya, T., Baqué, M., Rabbow, E., & de Vera, J. P. (2017, 13.-19.09.2017). 241. Cryophilic algae survive in space. Phycologia, 56(sp4), 115.
  • Wagner, D., de Vera, J.-P., Joshi, J., Leya, T., & Schulze-Makuch, D. (2015). Astrobiologie - dem Leben im Universum auf der Spur. System Erde5(1), 40-47. https://doi.org/http://doi.org/10.2312/GFZ.syserde.05.01.7
  • Leya, T., Klump, J., & Fuhr, G. (2015, 2015/08/03). Snow algae all over Svalbard? - An(other) attempt to explain their distribution patterns. European Journal of Phycology, 50(sup1), 77. https://doi.org/10.1080/09670262.2015.1069489
  • Kryvenda, A., Stehr, M., Leya, T., Olberg, B., & Friedl, T. (2015, 2015/08/03). The European PUFAChain project (FP7) - a value chain from algal biomass to lipid-based products. European Journal of Phycology, 50(sup1), 40. https://doi.org/10.1080/09670262.2015.1069489
  • Remias, D., Wastian, H., Lütz, C., & Leya, T. (2013). Insights into the biology and phylogeny of Chloromonas polyptera (Chlorophyta), an alga causing orange snow in Maritime Antarctica. Antarctic Science, 25(5), 648-656. https://doi.org/10.1017/S0954102013000060
  • Leya, T. (2013). Snow Algae: Adaptation strategies to survive on snow and ice. In J. Seckbach, A. Oren, & H. Stan-Lotter (Eds.), Polyextremophiles: Life Under Multiple Forms of Stress (Vol. 27, pp. 401-423). Springer Netherlands. https://doi.org/10.1007/978-94-007-6488-0_17
  • Leya, T. (2013). Survival Strategies in Psychrophilic Snow Algae - Ice Structuring Proteins (ISP). CryoLetters, 34(2), 174-216.
  • Spijkerman, E., Wacker, A., Weithoff, G., & Leya, T. (2012). Elemental and fatty acid composition of snow algae in Arctic habitats. Frontiers in Microbiology, 3, 380. https://doi.org/10.3389/fmicb.2012.00380
  • Remias, D., Schwaiger, S., Aigner, S., Leya, T., Stuppner, H., & Lütz, C. (2012). Characterization of an UV- and VIS-absorbing, purpurogallin-derived secondary pigment new to algae and highly abundant in Mesotaenium berggrenii (Zygnematophyceae, Chlorophyta), an extremophyte living on glaciers. FEMS Microbiology Ecology, 79(3), 638-648. https://academic.oup.com/femsec/article/79/3/638/491833?login=false/
  • de Vera, J.-P., Boettger, U., Noetzel, R. d. l. T., Sánchez, F. J., Grunow, D., Schmitz, N., Lange, C., Hübers, H.-W., Billi, D., Baqué, M., Rettberg, P., Rabbow, E., Reitz, G., Berger, T., Möller, R., Bohmeier, M., Horneck, G., Westall, F., Jänchen, J., Fritz, J., Meyer, C., Onofri, S., Selbmann, L., Zucconi, L., Kozyrovska, N., Leya, T., Foing, B., Demets, R., Cockell, C. S., Bryce, C., Wagner, D., Serrano, P., Edwards, H. G. M., Joshi, J., Huwe, B., Ehrenfreund, P., Elsaesser, A., Ott, S., Meessen, J., Feyh, N., Szewzyk, U., Jaumann, R., & Spohn, T. (2012). Supporting Mars exploration: BIOMEX in Low Earth Orbit and further astrobiological studies on the Moon using Raman and PanCam technology. Planetary and Space Science, 74(1), 103-110. https://doi.org/http://dx.doi.org/10.1016/j.pss.2012.06.010
  • Leya, T. (2011, 04.-09.09.2011). CCCryo - Culture Collection of Cryophilic Algae: a bioresource for industrially relevant metabolites. European Journal of Phycology, 46(sup1), 83-84. https://doi.org/10.1080/09670262.2011.613190
  • Remias, D., Karsten, U., Lütz, C., & Leya, T. (2010). Physiological and morphological processes in the Alpine snow alga Chloromonas nivalis (Chlorophyceae) during cyst formation. Protoplasma, 243(1-4), 73-86. https://doi.org/10.1007/s00709-010-0123-y
  • Leya, T., Rahn, A., Lütz, C., & Remias, D. (2009). Response of arctic snow and permafrost algae to high light and nitrogen stress by changes in pigment composition and applied aspects for biotechnology. FEMS Microbiology Ecology, 67(3), 432-443. https://doi.org/10.1111/j.1574-6941.2008.00641.x
  • Leya, T. (2009, 02.-05.06.2009). Can life be detected by impedance measurements due to changes in the electric properties of the environment? 2nd Helmholtz Alliance Week - Planetary Evolution and Life, Berlin-Adlershof (Germany).
  • Leya, T. (2008). Die „Ross-Proben“ von den Crimson Cliffs: Probe „MB_ES_1781c“ aus der Ehrenberg Sammlung des Naturkundemuseums Berlin.
  • Leya, T., Bley, U. S., & Zacke, T. (2006). 75. Adaptation strategies of psychrophilic snow algae to their cold environment. Cryobiology, 53(3), 399-399. http://www.sciencedirect.com/science/article/B6WD5-4MJC233-2N/2/bcc413ba72a95ad8031a76e5699e7b35
  • Leya, T. (2006). Fraunhofer IBMT benennt Landmarke in der Arktis
  • Leya, T., Müller, T., Ling, H. U., & Fuhr, G. R. (2004). Snow algae from north-western Spitsbergen (Svalbard) [Report]. Reports on Polar and Marine Research, 492, 46-54.
  • Leya, T. (2003). Feldstudien und genetische Untersuchungen zur Kryophilie der Schneealgen Nordwestspitzbergens [Doktorarbeit, Humboldt-Universität zu Berlin]. Berlin - published by Shaker Verlag, Aachen (2004), ISBN 3-8322-2438-6.
  • Müller, T., Leya, T., & Fuhr, G. (2001). Persistent snow algal fields in Spitsbergen: field observations and a hypothesis about the annual cell circulation. Arctic Antarctic and Alpine Research, 33(1), 42-51.
  • Leya, T., Müller, T., Ling, H. U., & Fuhr, G. (2001). Psychrophilic microalgae from north-west Spitsbergen, Svalbard: their taxonomy, ecology and preliminary studies of their cold adaptation using single cell electrorotation. Nova Hedwigia, Beiheft, 123, 551-570.
  • Reichle, C., Schnelle, T., Müller, T., Leya, T., & Fuhr, G. (2000). A new microsystem for automated electrorotation measurements using laser tweezers. Biochimica et Biophysica Acta, 1459, 218-229.
  • Leya, T., & Kies, L. (1997). The influence of drainage from potash mining on the composition of the algal flora in the River Wipper (Thuringia, Germany) - a preliminary study. Limnologica, 27(3), 301-306.
  • Leya, T. (1997). Diatoms for biomonitoring salinization. Phycologia, 36(4), 61-62.
  • de Nys, R., Leya, T., Maximilien, R., Afsar, A., Nair, P. S. R., & Steinberg, P. D. (1996). The need for standardised broad scale bioassay testing: a case study using the red alga Laurencia rigidaBiofouling, 10(1-3), 213-224. http://www.tandfonline.com/doi/abs/10.1080/08927019609386281?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dpubmed